New Representations in PSO for Feature Construction in Classification
نویسندگان
چکیده
Feature construction can improve the classification performance by constructing high-level features using the original low-level features and function operators. Particle swarm optimisation (PSO) is an powerful global search technique, but it cannot be directly used for feature construction because of its representation scheme. This paper proposes two new representations, pair representation and array representation, which allow PSO to direct evolve function operators. Two PSO based feature construction algorithms (PSOFCPair and PSOFCArray) are then developed. The two new algorithms are examined and compared with the first PSO based feature construction algorithm (PSOFC), which employs an inner loop to select function operators. Experimental results show that both PSOFCPair and PSOFCArray can increase the classification performance by constructing a new high-level feature. PSOFCArray outperforms PSOFCPair and achieves similar results to PSOFC, but uses significantly shorter computational time. This paper represents the first work on using PSO to directly evolve function operators for feature construction.
منابع مشابه
Improving the Operation of Text Categorization Systems with Selecting Proper Features Based on PSO-LA
With the explosive growth in amount of information, it is highly required to utilize tools and methods in order to search, filter and manage resources. One of the major problems in text classification relates to the high dimensional feature spaces. Therefore, the main goal of text classification is to reduce the dimensionality of features space. There are many feature selection methods. However...
متن کاملA New Approach for Text Documents Classification with Invasive Weed Optimization and Naive Bayes Classifier
With the fast increase of the documents, using Text Document Classification (TDC) methods has become a crucial matter. This paper presented a hybrid model of Invasive Weed Optimization (IWO) and Naive Bayes (NB) classifier (IWO-NB) for Feature Selection (FS) in order to reduce the big size of features space in TDC. TDC includes different actions such as text processing, feature extraction, form...
متن کاملApplying Genetic Algorithm to EEG Signals for Feature Reduction in Mental Task Classification
Brain-Computer interface systems are a new mode of communication which provides a new path between brain and its surrounding by processing EEG signals measured in different mental states. Therefore, choosing suitable features is demanded for a good BCI communication. In this regard, one of the points to be considered is feature vector dimensionality. We present a method of feature reduction us...
متن کاملA New Framework for Distributed Multivariate Feature Selection
Feature selection is considered as an important issue in classification domain. Selecting a good feature through maximum relevance criterion to class label and minimum redundancy among features affect improving the classification accuracy. However, most current feature selection algorithms just work with the centralized methods. In this paper, we suggest a distributed version of the mRMR featu...
متن کاملA Random Forest Classifier based on Genetic Algorithm for Cardiovascular Diseases Diagnosis (RESEARCH NOTE)
Machine learning-based classification techniques provide support for the decision making process in the field of healthcare, especially in disease diagnosis, prognosis and screening. Healthcare datasets are voluminous in nature and their high dimensionality problem comprises in terms of slower learning rate and higher computational cost. Feature selection is expected to deal with the high dimen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014